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ABSTRACT

Projection pursuit algorithms approximate a function of p variables

by a sum of non-linear functions of linear combinationsv.

n

() f p(a ll + +aipxp

We develop some approximation theory, give a necessary and sufficient condi-

tion for equality in (1), and discuss non-uniqueness of the representation.
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3. Introduction and Statement of Main Results

We present some mathematical analysis for a class of curve fitting

algorithms labeled "projection pursuit" algorithms by Friedman and Stuetzle

(1981 a, b). These algorithms approximate a general function of p variables

by a sum of non-linear functions of projections:

n
(1.1) f(x 1 , ... ,x) & I gi(ailx1 + . . . + a i p x p

In (1.-, f is a given function and univariate, non-linear functions gi

and linear combinations ailxi+ ... +ap x p are sought so that a reasonable

approximation is attained. Such approximation is computationally feasible

and performs well in examples of non-linear regression with noisy data, high

dimensional density estimation, and multidimensional splines. In addition

to the articles of Friedman and Stuetzle cited above see Friedman and Tukey

(1974), Friedman, Gross and Stuetzle (198]) for examples and computational

details. Huber (1981 a, b) begins to connect the algorithms to statistical

theory. This note treats the algorithms from the point of view of approxi-

mation theory.

It is easy to show that approximation is always possible.

aixi

THEOREM 1. Functions of the form Ea ea with real, a a vector of
i i

nonnegative integers, and x - (xl, ... , x p) are dense in the continuous real

valued functions on [0, 1]P under the maximum deviation norm.

Proof. The functions ea *! separate points of [0, 1]p and are closed under

multiplication. Finite linear combinations of such functions form a point

separating algebra which is dense because of the Stone-Wierstrass theorem. P
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THEOREM 2. Functions of the form

Eat cos(2iwa
1  x) + 01 sin(2 rb 

t  )

are dense in L 2[0, 1p

Proof. Any function in L2[0, 1 ]p can be well approximated by its Fourier

expansion. See Volume 2 of Zygmund (1959) and the survey article by Ash

(1976) for further details and refinements. U

Sometimes equality is possible in (1.1). For example

1 2 1 2xy -4 (x+ y)z  4 (x -Y)

max(xy) - x+yI + 'Ix-YI

2 1 4 7 4 1 4 2 34() (x+y)4 + - (x- y)4  (x+ 2y)4  ( i

4 3 2.3 3

In what follows we will focus on conditions for equality in (1.1) ae a method

of determining examples to test, compare, and evaluate algorithms. Consider

first a smooth function of 2 variables of the special form

f(x, y) - g(ax+ by)

ClearlyIo.
b a-!)f B0 .

If f has the form

n
(1.2) f(x,y) . X gi(atx+bie)

i-i
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then the differential operator

L- ax a ) an

applied to f is identically zero. The next theorem gives a converse.

THEOREM 3. Let f ck (0, 2  Suppose that for some real numbers co, ... , cn
n k

the operator c a applied to f is identically zero. If the polyno-n ii=O axiay n -

mial 1 ciz' has distinct real zeros then (1.2) holds for some (ai , b) . The
i=0Oi

lines aix + biy are all distinct.

Theorem 3 is proved in Section 2 which also contains a discussion of

techniques for finding directions (ai, bi) given f . Some applications of

Theorem 3 are contained in the following examples.

APPLICATION 1. The functions ex y and sin xy cannot be written in the form

(1.1) for any finite n. Indeed, the equation Ec i  f = 0 implies
ax ayn - i

ci = 0 and the associated polynomial has complex roots.

APPLICATION 2. Let f(xy) be a polynomial of degree m . Then

m
f(x, y) I gi(a ix+btY)

where each gi is a polynomial of degree at most m. This follows by elimi-

nating manipulations from Theorem 3. Thus, any polynomial in 2 variables

2can be represented exactly. Since polynomials are dense in C[0, 1] , this

gives another proof of denseness of projection pursuit approximations.
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APPLICATION 3. Representations of the form (1.1) are not necessarily unique.

For example

zy - c(ax +by) 2- c(az -by)2

2 2
for any a and b satisfying ab O,a +b 1 with c -l /4ab.

Writing a - cos 6, b - sin 0 , any non-coordinate direction can be chosen

for the quadratic gl. The second direction is forced as orthogonal to this.

This suggests that substantive interpretation of the linear combinations

(ai, bi) is difficult. For a more ambitious example, consider the function

(xy) 2 . This is of 4th degree. Use of Theorem 3 as outlined in Section 2,

shows that (xy)2 cannot be expressed as a sum of n - 3 or fewer terms in

(1.1). Four terms of 4th degree suffice:

(xy) 2  cs1(x+bly)
4 + 2 (x+b 2 Y) 4 + a 3(x+b 3y) 4 + a4 (x+b4y)

4

where b1 , b2 , b3 , b4 are chosen as distinct, and satisfying

b1b2 + b1b3 + b1b4 + b2b3 + b2b4 + b3b4 - 0.

Then a1 ,  2' C3* ( 4 are determined by
'l~ ' 2 b(3

I 6 H*(bj -i)

where the sum and product are over j y i. This clearly defines a three

dimensional family of solutions.

A
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APPLICATION 4. Even if the directions (ai, bi ) are fixed, the representation

need not be unique. Suppose that n is the smallest integer such that

n

f(x, y) - I gi(aIx+b iy)
i-1

If also
n

f(x, y)- . hi(aIx+ biY)
i-I

then

f i(t) - hit I M Wt , 1 < i < n

with pia polynomial of degree at most n - 1. The polynomials pi can be

chosen in an arbitrary way subject to the constraint Ep 0 - O. In particular,

any n - 1 of the pi can be chosen arbitrarily and a final polynomial can be

found to satisfy the constraint. These results all follow easily from Theorem 3;

indeed the operator Li U1 (b -L - aj applied to f (, y) givesJoi ax appdt ~,y te

h n )a x+bty) I (b a a b (n-1) ax+(aix+biy) 1 (ba a b )
I I j i j b I) j= i Ji

The products are non-vanishing because the directions are distinct. It follows

that hi differs from gI by at most a polynomial of degree n- 1, and that an

arbitrary polynomial may be added subject to the constraint.

In the special case n - 2, Theorem 3 was given by Dotson (1968) who

suggests further application to factoring probability densities and separation

of variables.

The generalization to dimension greater than two is not as neat. We give

3the result in 3 dimensions, characterizing functions on 0, 1] of the form

n
(1.3) gt(aix 1 +ai2x2 +5t3x3)I- I
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Clearly a smooth function f(x , x29 13) is of the form g(x 3 ) if and

only if a f and a f vanish identically. It is equivalent to insist that

b b2 + -x bf vanishes identically for all (b 1 , b2 , b3 ) in the

plane normal to the x3 axis (so b3 = 0 ) . The following theorem generalizes

these considerations. The generalization to p-dimensions is straightforward.

THEOREM 4. Let A be n distinct planes in IR3 . Let f c Cn[ 0 , 1] • Then

f has the form (1.3) if and only if for all bi e i ,

(1.4) 11 +i b + b -- 0

i- ax 2  i3ax3 f

Remarks. If cit di 111 form a basis, (1.4) holds for all bi Hi, 1 < i < n

if and only if it holds for the 2n cases in which bi runs over possible basis

vectors. The case n - 2 in (1.3) is degenerate and may be treated by Theorem 3:

for example, a necessary and sufficient condition for

f(x1, x2 , x3 ) = g1 (x1 ) + g2 (x 2 ) is f and -- - f vanish identically.

We conclude this introduction by relating the above results to Hilbert's

13th problem. In modern notation Hilbert asked if there are genuine multi-

variate functions. Of course, x + y is a function of 2 variables but

y x+logy is a superposition of univariate functions and +.

Kolmogorov and Arnold showed that, in this sense, + is the only function of

2 variables. They constructed 5 monotone functions *i: [0, 1] -, It, *i e Lip

with the following remarkable property: for each f £ C[O, 1] 2 there is a

g C C[O, 1] such that for all (x, y)

f(x, y) - s (x) + fi(Y)•i=l2
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Thus are a "universal change of variables" which allows exact equality.

A nice discussion of this result and its refinements can be found in Lorentz

(1966, 1980) and Vertushkin (1977). While the functions and g are given

In a constructive fashion, it does not seem that this result is used to

approximate functions in an applied context. This is probably because the

functions ti are fairly "wild". For example, it is known that it is not

possible to choose to be C1 functions, so fixed linear combinations of

x and y are ruled out. Indeed, it is known that there is a polynomial
n

f(x, y) for which f(x, y) = . gi(a x+b y) is not possible with as, bi
i=l

chosen independent of f. In the projection pursuit approach to approximation,

ai and b are allowed to depend on f and Example 2 shows that now any poly-

nomial can be written in the required form. Example 1 shows that not all

functions can be so expressed.

Acknowledgement. We thank Jerry Friedman, Bob Hulquist, and Winnie Li for

helpful discussions.
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2. Proof and Discussion of Theorems 3 and 4. Let L be the differential
U a

operator: I ci I-n-i * By hypothesis, the polynomial
1-0 ax ay

in-i n n x~iX cixy =y0  c
i=O iWO

splits into distinct linear factors. Thus L can be written as

H4 b - - a~ -L ). with the lines aix + b y distinct. It must be shown that
n

f can be represented as I gi(aix+biy) . The proof is by induction on n

For n - I, suppose without real loss that aI  0. Then f(x, y) - g(a x+bY)

with g(z) - f(j, OJ . One way to show this is to fix (x, y) and define
y - ty) Then h(0) - f X + L y, 0 - g(alx+blY);

a1 a 1  a~..y OJ1ax~~)
h(1) - f(x, y) and h'(t) 0 O, for 0 S t S I. The fundamental theorem of

calculus gives h(l) - t h' + h(O) . Suppose the result is true for operators

of degree <n - 1 . To prove it for degree n, write

i=n bax- a y i-tl bax- a bn - xx- an T --

By the induction hypothesis, there are functions gi, 1 _< i < n- 1 satisfying

a a n-i
(2.1) b -a f =  g1 (a x+ by) "

n X n i-i 9

A solution f* of (2.1) of the form

n-l
f (x, y) - [ hi(aix+biy)

i-i

is found by choosing hi(t) - (bna- -ani) b- 1  gL(s)ds . This is well defined

because the lines are distinct. Now {b -L -(ff) -f 0 can be solved

n ax an a



explicitly with f - f *(x, y) hn(anX+bny) by the argument for n 1. It

follows that f - f + h can be written in the required form. M

Remarks on Explicit Computations. Theorem 3 gives the existence of numbers

co , .. ,cn such that Zcj xin i (f) =_ 0. Fixing n + 1 distinct pairs (xis yi)

calculate a I and solve the resulting system of equations forax ayn  , j(x4 , y1 ) i

nIt is feasible to check if the polynomial co0+ ... + c nn has distinct real roots

using techniques in Chapter 6 of Henrici (1977). Each stage of the procedure is

feasible by a finite algorithm. If the procedure fails at any stage, then

equality is impossible. Given feasible co, ... , cn , it may be possible to find

the roots of the associated polynomial. This determines directions (ai, bi) .

In simple examples there is often enough freedom of choice to make deter-

mination of (ai, bi) possible. Consider f(x, y) = xy for n = 2,

2 f 2 a 2f 2f
H b - ai =blb2:f - (bla +b 2 a,) +a a2

i-ai ayx2 ax2y2

a2 f a2 f32
Since _f 0 1 ; any distinct choice of ai and b withx2 2 " axay i

bIa 2 = -b2a 1 works. Taking al = b. = 1, a2 = -b2 =1 , we are led to solve

f(x, y) - gl(x + y) + g2(x-y)

Applyi to both sides leads to y - x 2g2(x- ; s y .' x ay st sd x2 0;

g2 (x) -' g2 - -4 + c2 " Similarly, g (x) - 4 + c, and the result is
1 2 + - (xy) + c where c1 + c2 -0 is forced. In general,

n (n- )
if f - I g (a x+biy) ; b b a f - c 9 (a x+b y) , for ani-l 3yJJ c ax'aax b i

explicit ci . This determines gi up to an essentially free choice of an

n - 1 degree polynomial.
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In the case of a polynomial f, some additional tricks become available.

For a multinomial xayb let a + b - n ; only sums of the form a CI(x+ ajy)
i-i

need be considered. Expanding out and equating coefficients gives

'a ii Y ia 1 nci O
-E1 "0... " . ot b

This gives n + I equations in 2n unknowns. These are linear in a for 8

given and may be solved explicitly because the matrix is a Vandemonde with a

well known inverse. See Goutschi (1963).

Proof of Theorem 4. Condition (1.4) is clearly necessary. For sufficiency,

observe first that we may assume that the normals ai to the planes Ri span

a subspace of dimension 3 or higher. If the dimension of this subspace is

two, then the problem reduces to the corresponding problem in IR2 which was

solved in Theorem 3. The proof is by induction on n . For n - I, the

argument was given in the discussion preceding the theorem. Suppose that the

result has been demonstrated for n - 1 . For i - 1, ... , n, let b and c i

form a basis for 11 A generic element of i can be written as

Bibi + Yic,, for 0i, y, It . Write the equation (1.4) as

(2.2) ( Pi)(Pl(f)) 0

By the induction hypothesis,

n
(2.3) P1 f- gi(a .x)

i-2

We will now find the general solution to (2.3). To begin, note that P1 may

be regarded as a 2-parameter family of differential operators depending

linearly on (f 1,. 1 ) . It follows that the right side of (2.3) must depend
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linearly on (B1 , yL) . Write

9" Bg 1l + Ylg12

and

PIf
- E gil(a, x) + YI E g1 2(a, • x)

For this equation to have a solution, a necessary integrability condition

ongil and g1 2 must be satisfied. To see this, write

p 1( b.1 -aL b ~ -L b a
-= 81 b x b1 2  x2 b1 -)- + Y11 cll -+ c12 a-"+c1 3 ax- "

From (2.3) it must be that the following two equations are satisfied:

3 naf

jul j -2 a

3 n
J~l clj 3 = i2

The necessary condition for integrability is

Ec -5--{Eg (a x)} -Eb -DX { 'g 1 2 (a, x)}acj xj ii ai  axj

or

n n
(2.4) 1 (ci. a1)8g1 (a,. x) - (bI  a i)gi2(a .x)

i-2 i=2

IILet Gi be any f unction of one variable such that Gi - i Then

( j ax njX il a X
(2.5) n j i2

n

M- B[b 1 " ai gi l (a, x) + Y(cI "a igil (a, " )
1-2
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Integrating (2.4) gives, for some constant k:

n n
c aiasil (a. X) - b1 . a1 g12 (a - x) + k.

i-2 1-2

Substituting this in (2.5) gives

a

b b1  a [ .l(ai  x) + Yg12 (a, -x)] + yk.
1-2

n
If k - 0, then a particular solution to P 1 f W Egi would be f I (bi " a1-)-2GiJ=2

Note we can assume that b is chosen such that bi  ai 0 0 for all i - 2, ... , n.
i i

The next job is to show how to modify Gi to take care of non-zero k. Let

F (x1,x2,x3) - G1(a.x) + 
6 iei x

where 61 and ei "(e 1, e1 2, ei3) will be chosen later. Then,

{ Zb 1 j ax YC1 j }F( 29 x3)}

n n
- (b -a(a, - x) 2] + yk + I Si-2 b l .ei + c - e  •

1-2" j gl~-x g2 1-2 1

Set 6, - 0 for i > 3. Choose e2 such that e2  bI W 0 and e c O.
2 2 2 1

Set 62 = -k/1ce 2  . Then, the function

f(x ,x)-n Gt(a, x) + 62e2"x
1 2l3 1 be a i i1 2

solves the equation Plf - Og 8 11 + Yg12 . Having obtained a particular
I2

solution, we proceed to describe a general solution of P1f - g by studying

the general solution of the homogeneous equation P1f - 0. But, it is straight-

forward that a general solution of the homogeneous equation is of the form
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g(ai 0x) where a, .b1  a, .b2 -0 - Thus the general solution of (2.3) is

(2.6) G * G(a, X) + ae2 x +g(a, 0x)
i-2 bi ai 22

In (2.6) e 2 was chosen so 2 * bi - 0 e a2 * c 1 , Now we use the hypothesis

that three of the vecotrs ai 9 say a1,a 82* a3 are linearly independent, and

express e 2 as a linear combination of these three vectors. It follows that

the general solution can be expressed in the form

n
H H(ai x) as required.



-15-

References

Ash, J. M. (1976). Studies in Harmonic Analysis, Amer. Math. Soc.,

Providence, RI.

Dotson, W. G. (1968). Decomposability of positive functions on Rn, Amer.

Math. Monthly, 350-357.

Friedman, J. and Tukey, J. (1974). A projection pursuit algorithm for

exploratory data anlaysis, IEEE Transactions Computers C-23, 881-889.

Friedman, J. and Stuetzle, W. (1981 a). Projection pursuit regression.

To appear, Jour. Amer. Statist. Assoc.

Friedman, J. and Stuetzle, W. (1981b). Projection pursuit methods for data

analysis, Stanford Linear Accelerator, Technical Report.

Friedman, J. Gross, E., and Stuetzle, W. (1981). Multi-dimensional spline-

like fits. To appear, SIAM Jour. Sci. and Statist. Comp.

Goutschi, W. A. (1963). On inverses of Vandermonde and confluent Vandermonde

matrices, Numer. Math. 5, 425-430.

Henrici, P. (1978). Applied and Computational Complex Analysis, Vol. I,

Wiley, New York.

Huber, P. (1981 a). Density estimation and projection pursuit methods,

Technical Report PJH-7, Department of Statistics, Harvard University.

Huber, P. (1981b). Projection pursuit, Technical Report, Department of

Statistics, Harvard University.

Lorentz, G. G. (1966). Approximation of Functions, Holt, Rinehart, and

Winston, New York.



-16-

Lorentz, G. G. (1976). The 13th problem of Hilbert, in, Mathematical

Developments Arising from Hilbert Problems, Proc. Symp. Pine Math. XXVIII,

Amer. Math. Soc., Providence, RI.

Vitushkin, D. G. (1977). On representation of functions by means of

superpositions and related topics, L'Enseignement Math., July-Dec. 1977,

256-319.

Zygmund, K. (1959). Trigonometric Series, 2nd ed., Cambridge University

Press, Cambridge, England.

I



UNCLASSIFPIED
SECURITY CLASSIFICATION OF THIS PAGE fte n* ala Eaee

REPORT DOCUMENTATION PAGE READ C*I*ION5

1REPORT NUMSR IL GOVT ACCESSION h4 3. RECIPIZI&fS CATALOG NUMBER

313 f-4/5 c/7
4. TITLE (and Juslgb*It) L. TYPE OP REPORT a PEROD COVERED

A NOTE ON NON-LINEAR FUNCTIONS OF LINEAR TECHNICAL REPORT
COMBINATIONS 6. PERFORMING one. REPORT muMBER

7. AU THORfa) II CO6TRAC on GRANT "UmsUE1ri.

Persi Diaconis and Mehrdad Shashahani NOOO14-76-C-0475

9. PERFORMING ORGANIZATIONs HAM!4 ANO 10ADRES IS PROGR AM ELEMECNT. ,PRJECT_ TASKC
AREA a 'OR UIT NUaRDepartment of Statistics NR-042-267

Stanford University
Stanford, CA 94305

11. CONTROLLING OFFICE NAME AND ADDREtSS 12- REPORT DATE

Office Of Naval Research FEBRUARY 2, 1982
Statistics & Probability Program Code 436 IS NUMBER OF PAGES

Arlinaton, VA 22217 16
14. MONITORING AZX14CY NAME & ADORESS(If dilfoent Ise arelti CHfUfn 011) IL SECURITY CLASS. I. tade ,.P.MJ

ISO. CDECLASSIPICATION,'OOWNGRtAOING
SCNEDULE

IS. DISTRIBUTION STATEMENT (of this RtOPen

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (at the abstract torord 5 Ing 2loc ". iff.,mert host Repopt)

IS. SUPPLEMENTARY NOTES

Also distributed under National Science Foundation Grant
MCS8O-24649, Technical Report No. 179, November 1981.

It. KnEY WORDS rcotelow. an ftvore aide iI neesim ,wd lilsolp Jr'b wjeek mmbse)

Projection pursuit; Non-linear functions; Approximation theory.

20. A951 RACT (Cmntinue 00 uvaeo side 1111*96..iry ailm"H&A 61' Slea""

PLEASE SEE REVERSE SIDE.

DO I 'jo~""7 1473 EDITION OP I NIOV 4518 OBSOLETE UNCLASSIFIED
SoN 0102- V- W! SCURITY CLAM PICATION O ?Nfi PAGE ("on.bt Dee DDe.



UNCLASSIFIED
SUCU0TV CLASSPscAnag aprTias PAGI Me"m fl. Abwe"*

#313

A NOTE ON NON-LINEAR FUNCTIONS OF LINEAR COMBINATIONS

Projection pursuit algorithmns approximate a function of p

variables by a sum of non-linear functions of linear combinations;

We develop some approximation theory, give a necessary and suffi-

cient condition for equality in (1), and discuss non-uniqueness of

the representation.

S :::.. 3 rjs3 UCLASSIFIED
au:~~~,-w3 :aaecc, aP aaamo awe~,. xrn U.m



DA TE

F I I , L M E

r'-

I AO low

AL


